Archivo:Complex number illustration.svg
De testwiki
Ir a la navegación
Ir a la búsqueda
Tamaño de esta previsualización PNG del archivo SVG: 180 × 180 píxeles. Otras resoluciones: 240 × 240 píxeles | 480 × 480 píxeles | 768 × 768 píxeles | 1024 × 1024 píxeles | 2048 × 2048 píxeles.
Archivo original (archivo SVG, nominalmente 180 × 180 píxeles, tamaño de archivo: 1 kB)
Este archivo es de Wikimedia Commons y puede usarse en otros proyectos. La descripción en su página de descripción del archivo se muestra debajo.
Resumen
| DescripciónComplex number illustration.svg |
Afrikaans: 'n komplekse getal kan visueel voorgestel word as 'n getalpaar wat 'n vektor vorm op 'n diagram wat 'n Arganddiagram genoem word.
العربية: الشكل العام للعدد المركب.
বাংলা: একটি জটিল সংখ্যাকে দুইটি বাস্তব সংখ্যার একটা ক্রমজোড় হিসেবে দেখা যেতে পারে যেটা আসলে আরগ্যান্ড সমতলে একটা ভেক্টর নির্দেশ করে। এখানে (a,b) ভেক্টরটি জটিল সংখ্যা a+ib কে নির্দেশ করছে.
Ελληνικά: Ένας μιγαδικός z=a+bi παριστάνεται και με το διάνυσμα με αρχή το κέντρο των αξόνων και πέρας το σημείο (a,b).
English: A complex number can be visually represented as a pair of numbers forming a vector on a diagram called an Argand diagram, representing the complex plane. Argand diagram.
Español: Un número puede ser visualmente representado por un par de números formando un vector en un diagrama llamado diagrama de Argand.
فارسی: نمایش یک عدد مختلط در صفحه مختلط. در این شکل، a، قسمت حقیقی و b، قسمت موهومی است.
Võro: Kompleksarvo geomeetriline kujo.
Suomi: Kompleksilukua voidaan havainnollistaa kompleksitasolla, jonka vaaka-akseli kuvaa reaaliosan ja pystyakseli imaginaariosan suuruutta.
Français : Forme cartésienne d'un nombre complexe.
Gaeilge: Uimhir Choimpléascach ar an plána coimpléascach.
עברית: יצוג חזותי נפוץ של המספרים המרוכבים הוא בשילוב של ציר המספרים הרגיל, ובמאונך לו ציר דומה למספרים מדומים, כאשר המספרים המרוכבים מתקבלים מחיבור נקודות על שני הצירים.
हिन्दी: किसी समिश्र संख्या का अर्गेन्ड आरेख पर प्रदर्शन.
Latviešu: Kompleksu skaitli vizuāli var attēlot kā vektoru ar divām komponentēm jeb kā punktu plaknē.
മലയാളം: മിശ്ര സംഖ്യകളെ, ആർഗണ്ട് രേഖാചിത്രത്തിൽ ഒരു വെക്ടർ രൂപവത്കരിക്കുന്ന ഒരു ജോഡി സംഖ്യകളായി ചിത്രീകരിക്കാം.
Polski: Liczby zespolone mogą być przedstawione jako współrzędne wektora na płaszczyźnie zespolonej. Związek pomiędzy liczbą zespoloną i wskazem.
Português: Um número complexo representado como um par ordenado de números reais compondo um vetor bidimensional no Plano de Argand-Gauss.
Русский: Геометрическое представление комплексного числа. Illustration of a complex number |
| Fecha | 14 de enero de 2008 (fecha original de carga) |
| Fuente | Trabajo propio (Texto original: «self-made») |
| Autor | Wolfkeeper de Wikipedia en inglés |
| Otras versiones |
Obras derivadas de ésta: |
Licencia
Wolfkeeper de Wikipedia en inglés, titular de los derechos de autor de esta obra, la publica en los términos de las siguientes licencias:
| Se autoriza la copia, distribución y modificación de este documento bajo los términos de la licencia de documentación libre GNU, versión 1.2 o cualquier otra que posteriormente publique la Fundación para el Software Libre; sin secciones invariables, textos de portada, ni textos de contraportada. Se incluye una copia de la dicha licencia en la sección titulada Licencia de Documentación Libre GNU.http://www.gnu.org/copyleft/fdl.htmlGFDLGNU Free Documentation Licensetruetrue |
Este archivo se encuentra bajo la licencia Creative Commons Attribution-Share Alike 3.0 Unported, 2.5 Generic, 2.0 Generic and 1.0 Generic
Atribución:
- Eres libre:
- de compartir – de copiar, distribuir y transmitir el trabajo
- de remezclar – de adaptar el trabajo
- Bajo las siguientes condiciones:
- atribución – Debes otorgar el crédito correspondiente, proporcionar un enlace a la licencia e indicar si realizaste algún cambio. Puedes hacerlo de cualquier manera razonable pero no de manera que sugiera que el licenciante te respalda a ti o al uso que hagas del trabajo.
- compartir igual – En caso de mezclar, transformar o modificar este trabajo, deberás distribuir el trabajo resultante bajo la misma licencia o una compatible como el original.
Puedes usar la licencia que prefieras.
Registro original de carga
Aquí se muestra la página de descripción original. Los siguientes nombres de usuario se refieren a en.wikipedia.
- 2008-01-14 12:28 Wolfkeeper 249×328×0 (53238 bytes)
- 2008-01-14 12:22 Wolfkeeper 249×328×0 (54383 bytes) {{Information |Description= |Source=self-made |Date= |Location= |Author= |Permission= |other_versions={{DerivativeVersions|Complex number illustration modarg.svg}} }}
Leyendas
Añade una explicación corta acerca de lo que representa este archivo
Elementos representados en este archivo
representa a
14 ene 2008
image/svg+xml
86386a3c9e38f512bd3669fdf3acda1c2fc7aaa8
1285 byte
180 píxel
180 píxel
Historial del archivo
Haz clic sobre una fecha y hora para ver el archivo tal como apareció en ese momento.
| Fecha y hora | Miniatura | Dimensiones | Usuario | Comentario | |
|---|---|---|---|---|---|
| actual | 17:04 31 mar 2023 | 180 × 180 (1 kB) | wikimediacommons>Ponor | please fork: can't change labels, many wikis use (a,b) |
Usos del archivo
Las siguientes páginas usan este archivo: