Artículo de Friis/Índice/Área efectiva de un dipolo

De testwiki
Revisión del 22:20 9 ago 2024 de imported>Mazbel (Mazbel trasladó la página Artículo de Friss/Índice/Área efectiva de un dipolo a Artículo de Friis/Índice/Área efectiva de un dipolo: Título mal escrito)
(difs.) ← Revisión anterior | Revisión actual (difs.) | Revisión siguiente → (difs.)
Ir a la navegación Ir a la búsqueda
Español Inglés

Área efectiva del dipolo:

Adip=PrP0=3λ28π=0.1193λ2[0.3cm] Po=E2/120π
Pr=E2a24(80π2a2/λ2) = λ2E2a2320πa2= λ2E2320π2
Adip=λ2E2320π2E2120π=120πλ2E2320π2E2=3λ28π

Área efectiva de una circunferencia

Small Dipole with No Heat Loss

For a small uniform current element the available output power is equal to the induced voltage squared divided by four times the radiation resistance. Thus


Pr=E2a24Rrad


where
E=effective value of the electric field of the wave.
a=length of the current element.
Rrad. = radiation resistance of the current element
Rrad=80π2a2/λ2 Since the power flow per unit area is equal to the electric field squared divided by the impedance of free space,
i.e., Po=E2/120π, we have

Adip=PrP0=3λ28π=0.1193λ2

The effective area of a half-wavelength dipole with no heat loss is only 9.4 per cent, 0.39 decibels,2 larger than the effective area of the small dipole. Therefore

A0.5λ=0.1305λ2

The area of a rectangle with one-half wavelength and one-quarter wavelength sides is 0.125λ2 and it is, therefore, a good approximation for the effective areas of small dipoles and half-wavelength dipoles.


A0.5=0.1305λ2
0.1305λ2=πr2
0.1305πλ2=r2
0.04154λ2=r2
0.04152λ2=r2
r=0.2038λ