Matemáticas/Geometría Analítica/Tridimensional/Coordenadas Cilíndricas

De testwiki
Revisión del 18:44 27 feb 2024 de imported>Proferichardperez (Proferichardperez trasladó la página Geometría Analítica/Plano Tridimensional/Sistema de Coordenadas/Cilindrícas a Matemáticas/Geometría Analítica/Tridimensional/Coordenadas Cilíndricas: se lleva a libro de Matemáticas)
(difs.) ← Revisión anterior | Revisión actual (difs.) | Revisión siguiente → (difs.)
Ir a la navegación Ir a la búsqueda

El sistema de coordenadas cilíndricas es muy conveniente en aquellos casos en que se tratan problemas que tienen simetría de tipo cilíndrico o azimutal. Se trata de una versión en tres dimensiones de las coordenadas polares de la geometría analítica plana.

Un punto P en coordenadas cilíndricas se representa por (ρ,φ,z), donde:

  • ρ: Coordenada radial, definida como la distancia del punto P al eje z, o bien la longitud de la proyección del radiovector sobre el plano XY
  • φ: Coordenada azimutal, definida como el ángulo que forma con el eje X la proyección del radiovector sobre el plano XY.
  • z: Coordenada vertical o altura, definida como la distancia, con signo, desde el punto P al plano XY.

Los rangos de variación de las tres coordenadas son

0ρ<0φ<2π<z<

La coordenada azimutal φ se hace variar en ocasiones desde -π a +π. La coordenada radial es siempre positiva. Si reduciendo el valor de ρ llega a alcanzarse el valor 0, a partir de ahí, ρ vuelve a aumentar, pero φ aumenta o disminuye en π radianes.

Relación con otros sistemas de coordenadas

Relación con las coordenadas cartesianas

Coordenadas cilíndricas y ejes cartesianos relacionados.

Teniendo en cuenta la definición del ángulo φ, obtenemos las siguientes relaciones entre las coordenadas cilíndricas y las cartesianas:

x=ρcosφ,y=ρsinφ,z=z

Líneas y superficies coordenadas

Las líneas coordenadas son aquéllas que se obtienen variando una de las coordenadas y manteniendo fijas las otras dos. Para las coordenadas cilíndricas, éstas son:

  • Líneas coordenadas ρ: Semirrectas horizontales partiendo del eje Z.
  • Líneas coordenadas φ: Circunferencias horizontales.
  • Líneas coordenadas z: Rectas verticales.

Las superficies coordenadas son aquellas que se obtienen fijado sucesivamente cada una de las coordenadas de un punto. Para este sistema son:

  • Superficies ρ=cte.: Cilindros rectos verticales.
  • Superficies φ=cte.: Semiplanos verticales.
  • Superficies z=cte.: Planos horizontales.

Las líneas y superficies coordenadas de este sistema son perpendiculares dos a dos en cada punto. Por ello, éste es un sistema ortogonal.