Diferencia entre revisiones de «Matemáticas/Geometría Analítica/Tridimensional/Cono»
imported>Proferichardperez m Proferichardperez trasladó la página Geometría Analítica/Plano Tridimensional/Cono a Matemáticas/Geometría Analítica/Tridimensional/Cono: Se llevaa a libro de Matemáticas |
(Sin diferencias)
|
Revisión actual - 18:38 27 feb 2024
Ecuación en coordenadas cartesianas

En Geometría analítica y Geometría diferencial, el cono es el conjunto de puntos del espacio que verifican, respecto un sistema de coordenadas cartesianas, una ecuación del tipo:
Este conjunto también coincide con la imagen de la función:
que es llamada parametrización usual del cono.
Por ejemplo, en el caso que a = b (no nulos), éste conjunto es obtenido a partir de rotar la recta respecto al eje z, y por eso es llamada parametrización de revolución.
El cono no es una superficie regular, pues posee una singularidad: su vértice; quitándolo se convierte en una superficie regular disconexa y abierta. Entre sus características, podemos destacar que es una superficie reglada (es decir que se puede generar por el movimiento de una recta), y es desarrollable, es decir, que se puede desplegar sobre un plano; técnicamente esto se expresa diciendo que su curvatura gaussiana es nula (como en el plano o el cilindro)